

SEMINAR Pengurusan Halon dan MS:2678.2017

(Lembah Klang - Sabah - Sarawak - Timur - Selatan - Utara)

History of Refrigeration & **Airconditioning**

- 1830s Jacob Perkins vapor compression (ether)
- 1851 John Gorrie patent for air cycle
- 1859 R-717 / R-718 (ammonia/water)
- 1866 CO₂ marine applications
- 1873 R-717 (ammonia) commercial refrigeration Carl
- 1875 R-764 (sulfur dioxide)
- 1920s -R-600a (isobutane) & R-290 (propane)
- 1922 Willis Carrier R-1130 (dielene)
- 1926 R-30 (methylene chloride)

MS2678:2017 Flammable Refrigerant System Code of Practice - OVERVIEW -

Common Refrigerants in 1920s

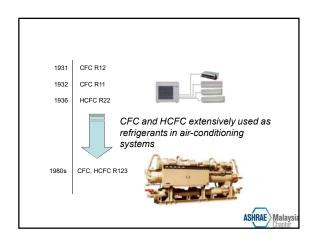
Ammonia (R-717) NH₃ **Carbon Dioxide** CO_2 **Sulfur Dioxide** SO₂ **Hydrocarbons** C_nH_m **Methyl Choride** CH₃CI Water H_2O

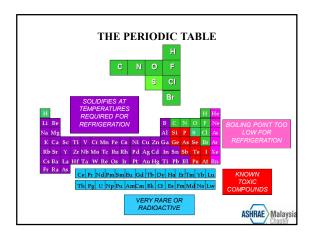
MS2678 - WG Members

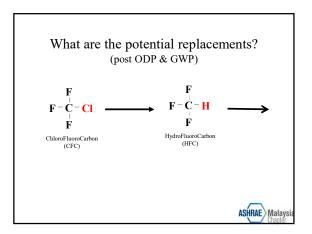
- 1. ASHRAE Malaysia Chapter
- Association of Consulting Engineers Malaysia
- 3. Daikin Research & Development (M) Sdn Bhd 4. Department of Environmental
- Department of Occupational Safety and Health
- Ener-Save Sdn Bhd
 Energy Commission
- 8. Fire and Rescue Department Malaysia
- Institut Latihan Perindustrian
- 10. Kumpulan Arena Sdn Bhd
- 11. Malaysian Air-Conditioning & Refrigeration Association
- 12. Pusat Penyelidikan Kebombaan
- 13. SIRIM Berhad (Secretariat)
- 14. The Institution of Engineers, Malaysia
- 15. Universiti Kuala Lumpur
- 16. Westech Chemicals Sdn Bhd

ASHRAE Malaysis

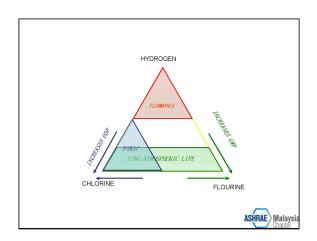
Challenge to Find Refrigerants (before ODP & GWP)


- · Non-flammable
- · Good Stability
- · Low Toxicity
- Atmospheric Boiling Point between -40°C & 0°C


From these elements, CFC refrigerants were formulated. ASHRAE Malaysia


How are Refrigerants selected?

The Periodic Table



SELECTING REFRIGERANTS (post Montreal Protocol)

✓ Physical Consideration

Operating Pressure & Temperature

Critical Point

Normal Boiling Point

Bubble & Dew Point Temperature

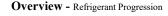
Fractionalization (Temperature Glide)

Flammability

Toxicity

Operating Pressure

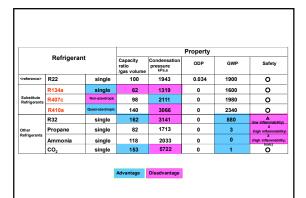
Lubrication


✓ Environmental Consideration
Ozone Depletion Potential (ODP)
Global Warming Potential (GWP)

ASHRAE Malaysia

ASHRAE Malaysia

Atmospheric Lifetime


✓ Efficiency COP

Today - 2018

The World Scenario:

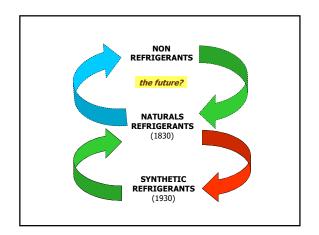
- CFCs successfully phased out (circa 2000)
- HCFC phase out program in progress
- · HFC phase down commenced
- · Low GWP and mildly flammable HFC/HFOs coming on stream
- HFOs gearing up to replace high GWP HFCs
- Natural refrigerants progressing at varying pace

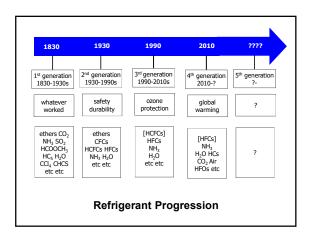
Overview - Refrigerant Progression

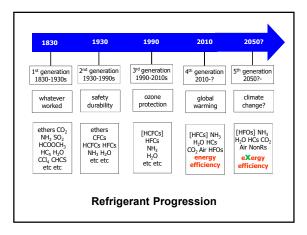
Today - 2018

The Local (Malaysia) Scenario:

- · CFC gone and dusted
- HCFC phase out program in place
- · HFC phase down schedule on the way
- Naturals (HC) increasingly creeping on board
- HFC-134a, HFC-410a are prevalent
- HFC-32 introduced in Indonesia begins to make its mark
- · HFOs beginning to appear
- RRR practice remains insignificant
- HCs for domestic refrigerators are finally here!!


Overview - Advent of Flammable Refrigerants


The first generation of refrigerants was all about accepting anything that worked - heralding the era of Natural refrigerants


The second generation addressed concerns on safety (flammability), toxicity & durability - the era of Synthetic refrigerants

The third generation refrigerants sought to protect our ozone layer - the demise of CFCs followed by HCFCs

Today's fourth generation seeks to arrest global warming - completing the circle back to the first generation refrigerants

RECAP (1990): Did we jump out of the frying pan into the fire? CFCs HFCs HFCs NON Rs NATURAL Rs ???

Natural Refrigerants

- Certainly European-led and it is heartening to note that the pace has been maintained if not increased since 1997
- Ammonia chillers for high-rise and commercial buildings are already established but
- HC airconditioners are prevalent in Scandinavian countries for the last decade
- HC domestic refrigerants are the norm in Europe; in Japan since 2005 and finally in Malaysia in 2017!!

MS on Flammable Refrigerant System

The need for this MS 2678 was initiated by Bomba

.... more than 15 years after the author first presented HC (flammable) refrigerant to the local industry in Jan 2000

2.1 Flammable refrigerant

Flammable refrigerant - Refer to ISO 817 on class A2L, 2 and 3

ISO 817:2014 provides an unambiguous system for assigning designations to refrigerants. It also establishes a system for assigning a safety classification to refrigerants based on toxicity and flammability data, and provides a means of determining the refrigerant concentration limit.

Flammable Refrigerant System

MS 2678 consists of the following sections:

Section 1: Administration

Section 2: Definition and classification of flammable refrigerants

Section 3: Design, construction, testing, marking and documentation

Section 4: Installation site

Section 5: Operation, maintenance, repair and recovery

		Flammable Refrig	gerants	
Refrigerant No.	Refri Prefix	Chemical Name	Formula	Safety Group
R32	HFC	methylene fluoride	CH_2F_2	A2L
R50	HC	methane	CH_4	A3
R142b	HCFC	chloro difluoroethane	CH ₂ CCIF ₂	A2
R143a	HFC	trifluoroethane	CH ₃ CHF ₃	A2L
R152a	HFC	d fluoroethane	CH ₃ CHF ₂	A2
R170	HC	ethane	CH ₃ CH ₃	A3
R-E170		dimethyl ether	CH ₂ OCH ₃	A3
R290	HC	propane	CH ₃ CH ₂ CH ₃	A3
R600	HC	butane	CH ₃ CH ₂ CH ₂ CH ₃	A3
R600a	HC	isobutane	(CH ₃) ₂ CHCH ₃	A3
R601	HC	pentane	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A3
R702		hydrogen	H ₂	A3
R717		ammonia	NH ₃	B2L

Flammable Refrigerant System

The purpose of MS 2678 is to promote the safe design, construction, disposal, installation, and operation of refrigerating systems and equipment using flammable refrigerants.

It is intended to minimize possible hazards to persons, property and the environment from refrigerating systems using flammable refrigerants.

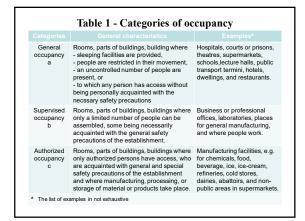
These hazards are associated essentially with the physical and chemical characteristics of flammable refrigerants as well as the pressures and temperatures occurring in refrigeration cycles.

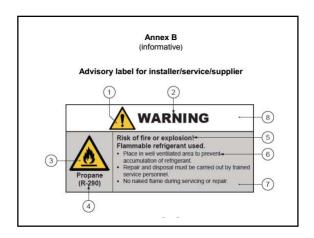
R1150	HC	ethylene	CH ₂ =CH ₂	A3
R1234yf	HFO	tetrafluoropropene	$CF_2CF=CH_2$	A2L
R1270	HC	propylene	CH ₂ CH=CH ₂	A3
R403A		R290/22/218		A1/A2
R406A		R22/600a/142b		A2/A2
R411A, R		A, R413A, R415A, R415B, R418 R433A, R433B, R433C, R435A,		431A,

2.5 Refrigerant Charge Limit

Refrigerant charge limit – Refer ISO 5149-1:2014, Clause 6

6 Quantity of refrigerant per occupied space


- 6.1 The amount of a refrigerant charge that could enter into the occupied space shall be determined as follows.
- For occupied spaces, the refrigerant quantity shall not exceed the amounts specified in Tables A.1 and A.2
- The refrigerant quantity is the quantity that can be released in an occupied space, and shall be the largest charge of any single refrigerating system, unless otherwise specified in this International Standard.
- 6.2 Where IEC or ISO product standards exist for particular types of systems and where these product standards refer to refrigerant quantities, such quantities shall overrule the requirements of this part of ISO 5149.


3.2 Design and Construction

• 3.2.2 Marking and instruction

When flammable refrigerants are used, the flammable refrigerant symbol, W021 (refer to Figure 1) shall be displayed appropriately according to ISO 7010.

- * Adopted from IEC 60335-2-40 Clause 7.6
 - When a flammable refrigerant is used, a warning symbol W021 of ISO 7010
 perpendicular height of the triangle containing the "Caution, risk of fire" symbol shall be at least 30 mm.
 - 2. This marking should be present on all new equipment with all classes of flammable refrigerant

3: Design, Construction, Testing, Marking ..

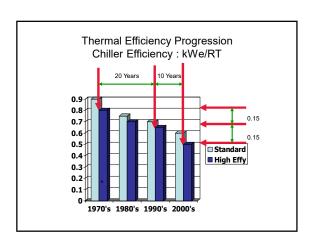
 Flammable refrigerants shall only be used in equipment or refrigerating system designed and constructed or retrofitted specifically for such application and the refrigerant used is clearly identified

3.3 Safety Control measures

- 3.3.1 Duties of installer/supplier/service personnel
 - to provide adequate documentation according to IEC 60335-2-40:2013; Annex HH
 - Advisory label to be affixed permanently
 - To be inspected and certified by an authorised/competent personnel
- 3.3.2 Duties of end users
 - Advised to engage trained service personnel...

4.2.13 Ventilation

- Section 4.2.13.2 Ventilation in machinery rooms when occupied to be minimum of four air change
- Section 4.2.13.3 Ventilation system requirement similar to ISO 5149-3:2014 5.14.1.2.
- *Gas detector required for room with system charge exceeding the Practical Limit


CONCLUDING REMINDER

- Why let 1% continue to dictate 99%?
- Cooling due to chillers accounts for only 15% of our local market
- Refrigerant Efficiency rather than Hardware Efficiency will continue to rule aka
- Energy Efficiency instead of Exergy Efficiency

Requirement on "Trained and Certified Operating Personnel"

• 5.1 General requirements

Operation, maintenance, repairing and refrigerant recovery should be carried out by trained and certified personnel in the use of flammable refrigerants. Any personnel conducting an operation, servicing and maintenance on a system or associated parts of the equipment should be trained and certified. Personnel working on refrigerating systems with flammable refrigerants should be trained and certified to achieve competence in skills and safety aspects of flammable refrigerant handling.

Requirement on "Trained and Certified Operating Personnel" (cont'd)

- The general requirement of trained and certified personnel are indicated as below:
- a) Knowledge of legislation, regulations and standards relating to flammable refrigerants;
- b) Detailed knowledge of and skills in handling flammable refrigerants, personal protective equipment, refrigerant leakage prevention, handling of cylinders, charging, leak detection, recovery and disposal;
- Able to understand and to apply in practice the requirements in this Malaysia Standard; and
- d) Continuously undergo regular and further training to maintain this expertise

the end

