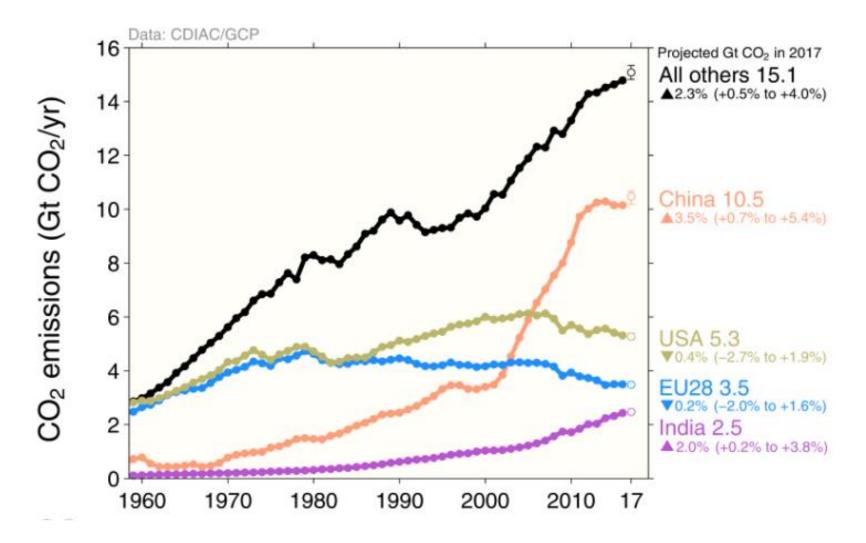
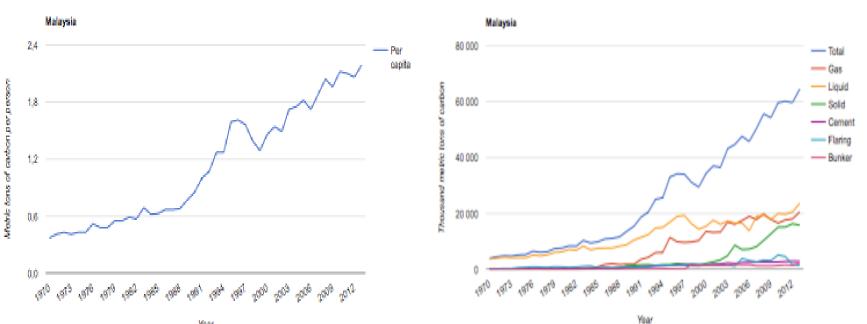

Alternative Refrigerants for Refrigeration and Air-Conditioning sector Carbon Dioxide Technology.


Ng Wen Bin Senior Lecturer UNIKL MFI President Elect ASHRAE Malaysia Chapter

Global CO2 emissions

Global Carbon Project

CO2 Emissions per country

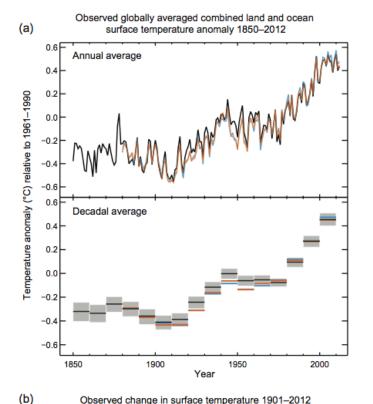


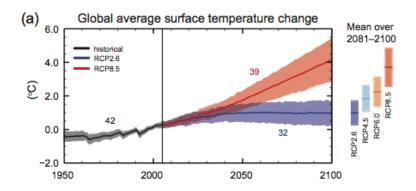
Malaysia fossil fuel carbon emissions

source CDIAC

Per capita

Total, per fuel


Year


Mean global temperature

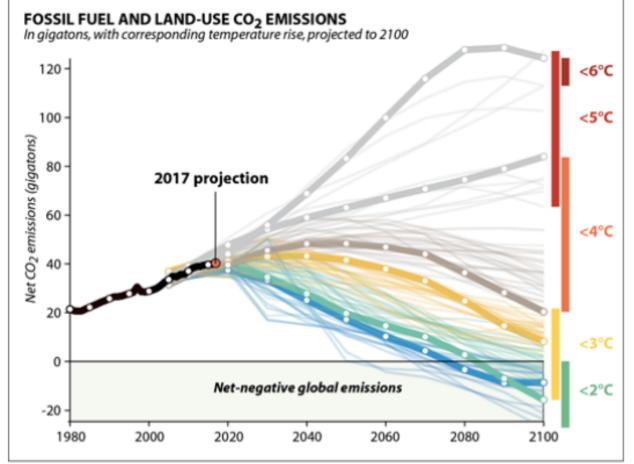
IPCC 2012 data

Warming of 0.85°C 1880-2012

Expected warming

2016 Climate change data Source (WMO)

 Global warming since pre-industrial period reaches 1.1°C


 The target of global warming limitation at 1.5°C by 2100 seems impossible

• Target of 2°C global warming limitation still achievable if drastic measures are applied

Global CO2 emissions predictions

CO₂ Emissions Are Still Rising

Human-caused greenhouse gas emissions had appeared to be leveling off, but new research shows 2017 is headed for a new high. The future projections show how emissions levels translate to temperature rise.

Risks for high global warming by 2030

- Global temperature records have been broken between 2010 and 2016 since global warming reached 0.25°C in that 6 years period corresponding to 0.4°C for 10 years
- Following that rythm and without drastic measures, 1.5°C global warming should be reached before 2030 and probably around 2025

Consequences of global warming

- Independently of the global warming, the other consequences could have dramatic repercussions:
 - Seal level increase
 - Flood but also drought depending on the regions,
 - Typhons intensification,
 - Health problems (dengue, etc.)

It is the reason why measures to attenuate climate change have to be taken in all sectors including air conditioning and refrigeration

Paris Agreement COP21 (2015)

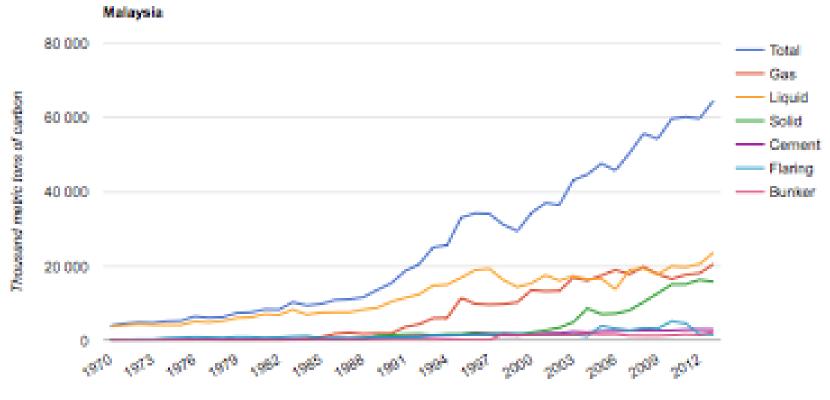
 The Paris Agreement builds upon the Convention and brings all nations into a common cause to undertake efforts to combate climate change and adapt to its effects, with enhanced support to assist developing countries to do so.

Paris Agreement COP21

 The Paris Agreement central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degree Celsius.

2018 situation and perspectives

- As previously said: 1.5°C temperature limitation by 2100 seems impossible.
- To get 2°C temperature limitation requires limitations of the emissions as given by the models.

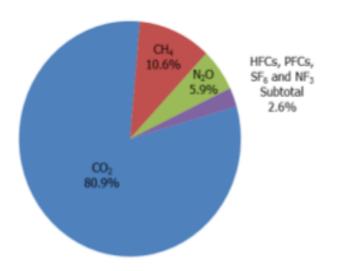

- The emissions must peak before 2030
- Then, they should decrease rapidly to be halved in the period 2070-2080

Malaysia contribution to COP21

source: INDC Malaysia's document

- Malaysia intends to lacksquarereduce its GHG emissions intensity per GDP by 45% by 2030 relative to the emissions intensity per GDP in 2005. This consists of 35% of an unconditional basis and a further **10% is condition** upon receipt of climate finance.
- Malaysia's emissions intensity per GDP has been reduced by 23% between 2005 and 2015.
- The extra effort should then be 12% unconditional reduction (and 22% conditional reduction) between 2015 and 2030

Malaysia emissions



Year

Refrigerants contribution to greenhouse gas emissions

US HFCs emissions: 2.6%

World-wide HFCs emissions: 5%

- Contribution of refrigerants to GHG emissions is still low (5%) but is increasing due to the development of the cold chain. If no measures are taken, HFC emissions will reach 10-15% of the total by 2050, that is too much.
- In Malaysia, A/C and refrigeration correspond to more than 50% of electricity consumption

Why are HFCs so harmful?

- The emission of 1kg of standard HFC corresponds to the mean emission of 2000kg CO₂ (about 1400 for R-134a & 4000 for R-404A)
- It is impossible to have cooling units without leakage
- It is the reason why a phase-down of those substances is scheduled.

2016 Kigali Agreement

- The Kigali amendment to the Montreal Protocol could prevent 0.5 degree Celsius of global warming by 2100.
- Developed countries take the lead on phasing down the refrigerant greenhouse gases starting with a 10% reduction in 2019 and a 85% cut in 2036.

Kigali agreement for developing countries

- Developing countries will get more time for phasing down the HFCs.
- We will have to freeze the consumption by 2024 with the first reduction in 2029.
 - That means that the present refrigerating systems will be obsolete in developed countries within a few years and at most within 10 to 15 years in developing countries.

Alternatives to HFCs

- The consequences of this phase-down is that alternatives have to be found.
- Right now three categories of alternatives do exist:
 - Replacement of HFCs by other chemicals (HFOs) with low GWP
 - Replacement by natural refrigerants
 - Development of green refrigeration technology

History of environmental constraints on refrigerants

Before the ozone layer issue

 The environmental constraints on the refrigerants concerned only local environment:

> toxicity flammability

After the ozone layer issue

- Now, the environmental constraints concern mainly global environment:
 - No impact on the ozone layer (Montreal Protocol)
 - Soon, nearly no impact on global warming (Kigali Agreement).

But the constraints concerning local environment (toxicity & flammability) still exist but are being modified.

Natural refrigerants without significative direct contribution to GHG emissions

Conventional one

• Ammonia has been used from the beginning of refrigeration. Very long experience but it is toxic & flammable so that it must be handled with care.

New ones

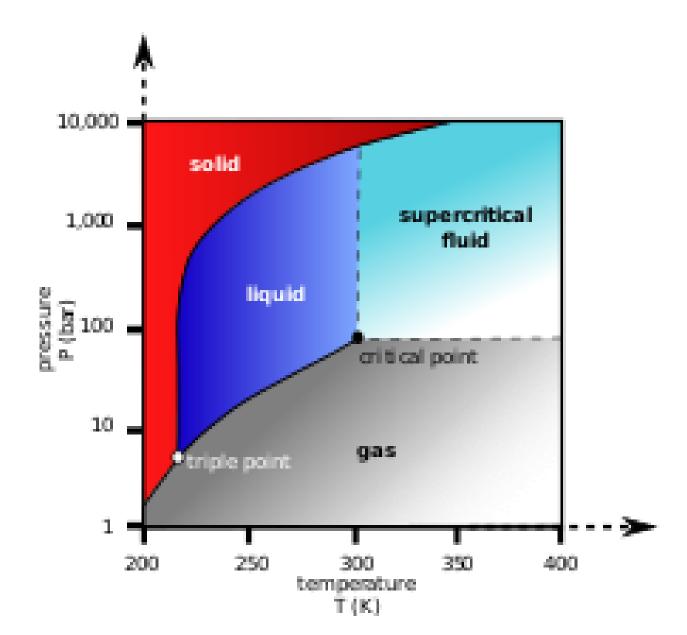
- CO₂ is not toxic neither flammable but present properties that are not usual
- Hydrocarbons are not toxic but are flammable.

History – CO₂

- 1. 1835 Thilorier produces solid CO₂, usage of dry ice for laboratory purposes
- 2. 1869 1885 Windhausen develops concepts for refrigeration with CO₂
- 3. 1881 A CO₂ refrigeration system was developed by Linde
- 4. Since 1887 Riedinger (Augsburg), Haubold(Chemnitz), Hall(England) build CO₂ plants for reefer ships
- 5. 1894 Mollier develops his diagram for CO₂
- Since 1900 usage of CO₂ large scale refrigeration plants, reefer ships, AC domestic systems, dry ice for mobile refrigeration.

History – CO₂

- Around 1900 37% of all reefer ships were equipped with cold air refrigeration systems. All others were equipped with compression cycles (37% with Ammonia and 25% with CO₂ as refrigerant).
- 8. After the ammonia cycle was significantly improved in the 1930s, carbon dioxide lost its importance as a refrigerant .
- Bäckström reports in 1950 that 60% of the reefer ships and 10% of the stationary systems are operated with CO₂ as refrigerant.
- 10. In the 1960's CO₂ nearly ceased as refrigerant due to the easier to handle FCKW. Only dry ice remained as permanent application.
- Revival of CO₂ due to awareness of ozone depletion and greenhouse effects caused by CFC/ HCFC/ HFC/ HBFC as refrigerant.


Properties of Carbon Dioxide

- Chemical formula : CO₂ (covalent bond O=C=O)
- 2. Mole mass : M = 44.011 kg/kmol (Refrigerant number = R744)
- 3. Standard density : 1.977kg/m3 (0°C, 101.325kPa)
- 4. Density ratio CO_2 / Air = 1.529
- 5. Critical temperature = 31°C
- 6. Critical pressure = 73.83 Bar
- 7. Sublimation point : t = -78.9°C at 0.981 Bar
- 8. Triple point : t = -56.6°C at 5.18 Bar
- 9. Decomposition temperature from 1200°C

Properties of Carbon Dioxide

- 11. Colour of the vapour : Transparent
- 12. Reaction to fire : incombustible
- 13. Reaction at atmospheric condition : stable
- 14. Aroma : not perceptible
- 15.Taste : Neutral
- 16. Toxicity : non toxic,
- 17.MAK- value : 5000 ppm
- 18. Danger at high concentrations:
 - Irritation of the respiratory centre from 30 000 to 50 000 ppm (3 to 5 vol%)
 - Unconsciousness at 70 000 to 100 000 ppm (7 to 10 vol%)

Properties of Carbon Dioxide

CO₂ as refrigerant

Refrigerant	GWP
R22	1810
R404A	3922
R134a	1430
R507A	3985

- 2. Low greenhouse warming effect GWP =1
- 3. Chemically stable, non toxic
- 4. Cheap and available
- 5. No necessity for recycling or decommissioning
- Very high volumetric refrigeration performance (5 to 8 times higher than R22 and ammonia, which leads to small parts and machinery)

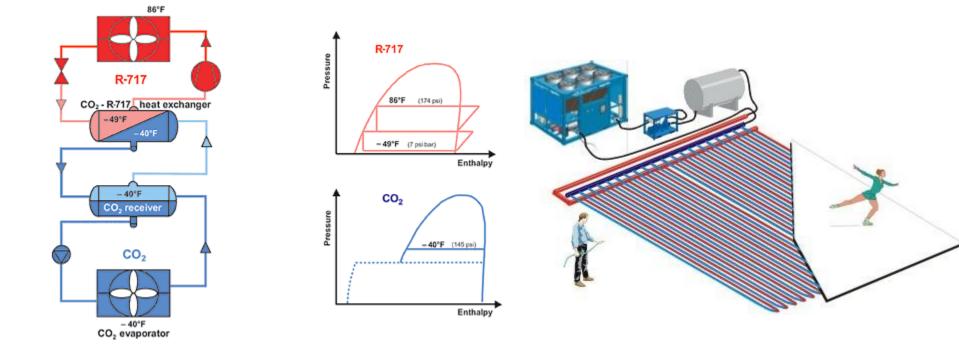
CO2 as refrigerant

Disadvantage

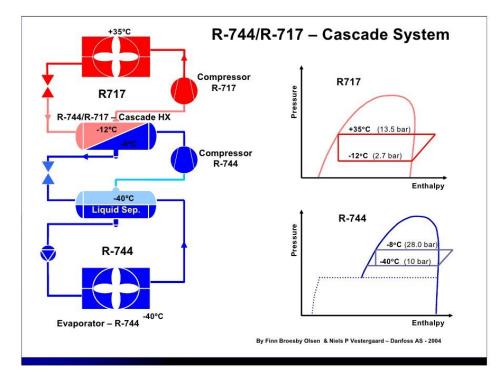
- 1. Misfortunate thermodynamic properties for standard atmospheric conditions
- 2. Very high pressure conditions
- 3. Transcritical constructions for single stage systems necessary
- 4. Less economic than a classic refrigeration cycle with complete condensation

CO2 as refrigerant- usage

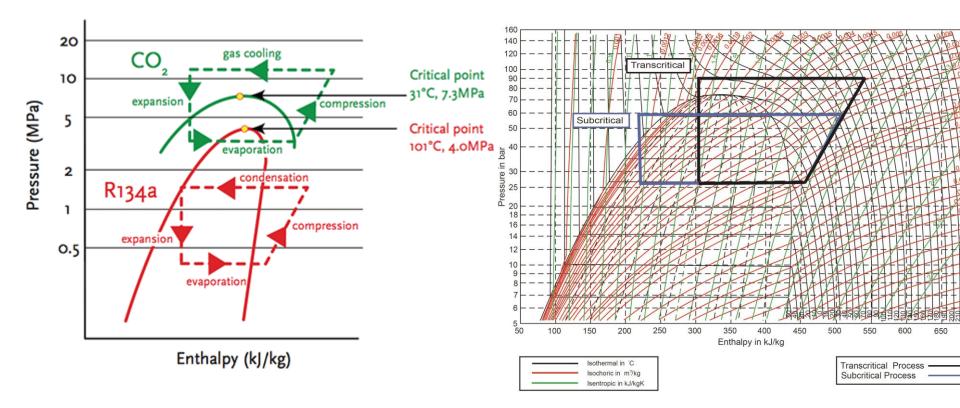
1. Dry Ice



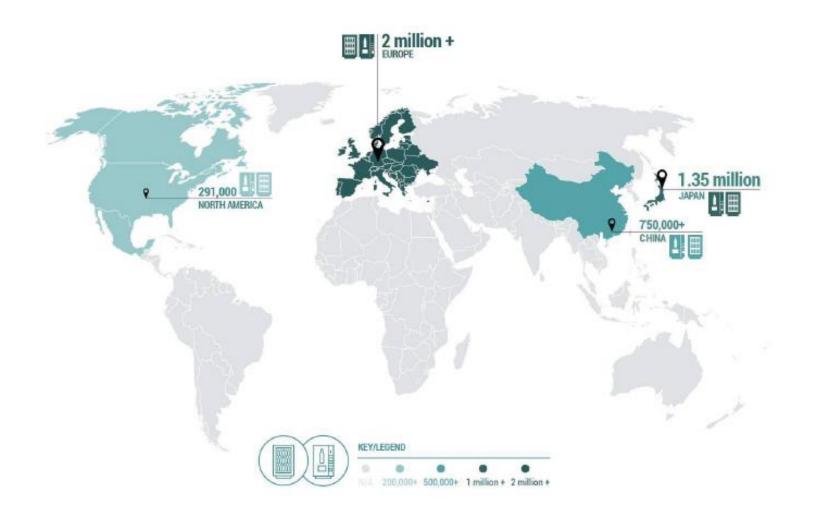
2. Dry Ice Pellets


CO₂ as refrigerant - usage

3. Brine


CO₂ as refrigerant

4. Cascade refrigeration system


CO₂ as refrigerant

5. Transcritical refrigeration system

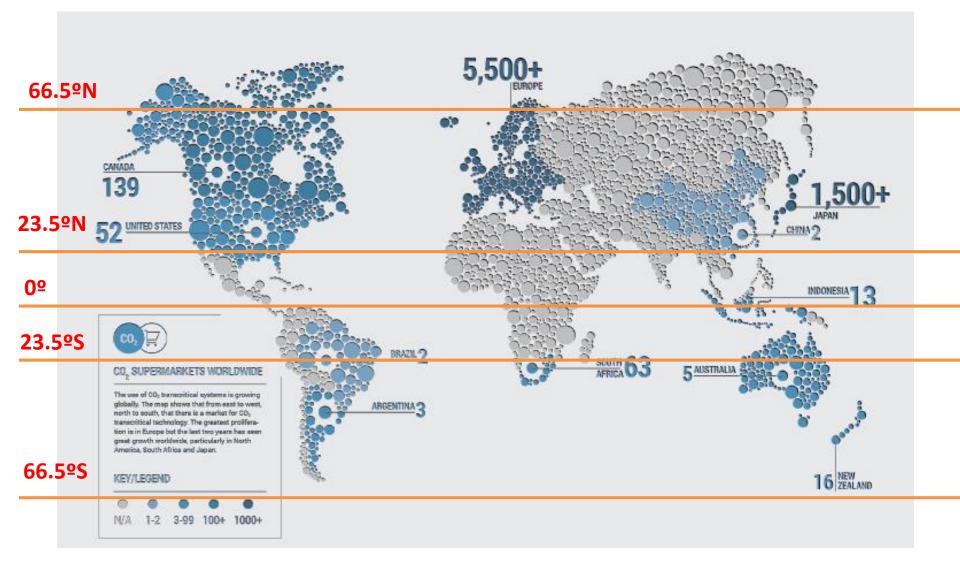
Beverage Vending Machines

source Shecco 2016

CO₂ for supermarkets

CO2 presently very popular in supermarkets to replace high GWP refrigerant for refrigerated display cabinets : for fresh as well as frozen products conservation.

A central unit chiller is generally used to distribute the chilled transfer media at 2 different temperatures through the cabinets.



compSUPER XS2x2VP

CO2 TC store in the World

source Shecco 2016

Europe's New F-Gas Phase-Down and Bans Go Into Effect January 1, 2015

JAPAN F-GAS LAW DESIGNATED PRODUCTS

Designated products	Present refrigerant (GWP)	Target value (GWP)	Target year
Room air conditioning	R410A (2090), R32 (675)	750	2018
Commercial air conditioning (offices & stores)	R410A (2090)	750	2020
Condensing units and refrigeration units (> 1.5kW)	R404A (3920), R410A (2090), R407c (1774), CO ₂ (1)	1500	2025
Cold storage warehouse (> 50.000m³)	R404A (3920), NH ₂ (0)	100	2019
Mobile air conditioning	R134a (1430)	150	2023

USA F-GAS : DESIGNATED PRODUCTS

MOTOR VEHICLE AIR CONDITIONING - NEW LIGHT-DUTY SYSTEMS

Substitutes	Decision
HFC-134a	 Unacceptable as of Model Year (MY) 2021, except where allowed under a narrowed use limit through MY 2025.
	 Acceptable, subject to narrowed use limits, for vehicles exported to countries with insufficient servicing infrastructure to support other alternatives, for MY 2021 through MY 2025.
	 Unacceptable for all newly manufactured vehicles as of MY 2026.

RETAIL FOOD REFRIGERATION

End-use	Substitutes	Decision
Supermarket Systems (Retrofit)	R-404A, R-407B, R-421B, R-422A, R-422C, R-422D, R- 428A, R-434A, R-507A	Unacceptable as of July 20, 2016
Supermarket Systems (New)	HFC-227ea, R-404A, R-407B, R-421B, R-422A, R-422C, R-422D, R-428A, R-434A, R-507A	Unacceptable as of January 1, 2017
Remote Condensing Units (Retrofit)	R-404A, R-407B, R-421B, R-422A, R-422C, R-422D, R- 428A, R-434A, R-507A	Unacceptable as of July 20, 2016
Remote Condensing Units (New)	HFC-227ea, R-404A, R-407B, R-421B, R-422A, R-422C, R-422D, R-428A, R-434A, R-507A	Unacceptable as of January 1, 2018
Stand-Alone Units (Retrofit)	R-404A, R-507A	Unacceptable as of July 20, 2016

VENDING MACHINES

End-use	Substitutes	Decision
Retrofit	R-404A, R-507A	Unacceptable as of July 20, 2016
New	FOR12A, FOR12B, HFC-134a, KDD6, R- 125/290/134a/600a (55.0/1.0/42.5/1.5), R-404A, R- 407C, R-410A, R-410B, R-417A, R-421A, R-422B, R- 422C, R-422D, R-426A, R-437A, R-438A, R-507A, RS-24 (2002 formulation), SP34E	Unacceptable as of January 1, 2019

The refrigerants challenges for tropical climates

- Routes do exist for **post Kigali cooling solutions** for tropical climates including mainly:
 - CO₂ systems
 - Hydrocarbons systems
- But, the best solutions for temperate climates are not always good for tropical climate.
- Specific studies on the best natural refrigerant solution for tropical climate are to be determined
 - for air conditioning
 - as well as for commercial & industrial refrigeration

Challenges for Malaysia

- New policy
- Know how for natural refrigerant
- Professional certificate for handling these refrigerants
- Awareness program, Safety regulation, Code of practise ...etc

Thank you!

ngwenbin@unikl.edu.my